Solution
- 在
dp
中存三角形第 i
層每個位置最小路徑和是多少, i
跑到下一層時再覆蓋掉上一層。每一次更新 dp 必須從 last index 倒過來算,index 0 需要是最後算的,不然會被覆蓋掉。 - 倒過來比較好做
- Time:
O(n^2)
, Space: O(n)
Implementation
class Solution {
fun minimumTotal(triangle: List<List<Int>>): Int {
val dp = IntArray(triangle.size)
dp[0] = triangle[0][0]
for (i in 1 until triangle.size) {
var j = i
dp[j] = triangle[i][j] + dp[j-1]
while (--j > 0) {
dp[j] = triangle[i][j] + min(dp[j-1], dp[j])
}
dp[0] = triangle[i][j] + dp[0]
}
return dp.min()
}
}
Implementation 2
class Solution {
fun minimumTotal(triangle: List<List<Int>>): Int {
val dp = IntArray(triangle.size + 1)
for (i in triangle.size - 1 downTo 0) {
for (j in 0..i) {
dp[j] = triangle[i][j] + min(dp[j], dp[j + 1])
}
}
return dp[0]
}
}